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Study of Whispering Gallery Modes in

Double Disk Sapphire Resonators
Hong

Abstract—A mode matching method for determining the res-
onant frequencies of the whispering gallery modes in a double

cylindrical disk dielectric resonator is presented. The method
has an improved accuracy in the calculation of the transverse
magnetic modes with high axial numbers in a single uniaxial-

anisotropic disk resonator. In this paper, frequency tuning and

detuning due to the interaction between various whispering
gallery modes will also be discussed.

I. INTRODUCTION

H IGH PURITY sapphire dielectric resonators have been

used to construct low noise and ultra stable oscillators

owing to their very low dielectric loss and low thermal

expansion coefficient [1 ]–[3]. A double disk sapphire resonator

with a high Q-factor and frequency tuning coefficient has also

been employed to construct an ultra-high sensitivity vibration

transducer [4], [5].

Accumte determination of the resonant frequencies of whis-

pering gallery (WG) modes from complete field solutions for

the tunable dielectric resonators which comprise two or more

pieces of dielectrics is very difficult, and there is a need to

find simplified approaches. A variety of the tunable dielectric

resonators with two or more pieces of dielectrics and methods

of calculating their resonant frequencies (low order modes)

have been reported previously [6]–[9]. One such method is the

mode matching method which solves the basic electromagnetic

field equations with relevant boundary conditions [7], [9].

This method can usually provide accurate solutions for some

simple and symmetrical resonator configurations. There is also

the coupling method which uses equivalent electric circuits

to model the coupled resonators [8], [10]. It provides a

simple way to calculate the resonant frequency tuning and

detuning due to the interaction of two coupled modes. But

this coupling calculation method does not directly give the

resonant frequencies, and is limited to coupled modes with

simple coupling coefficients. (e.g., linear or constant coupling

coefficients ) When the coupling coefficients are neither linear

nor constant, the coupling calculation becomes quite difficult.

A finite element method has been introduced to calculate the

resonant frequencies of a temperature compensated sapphire
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resonator [11]. It is expected to be capable of solving problems

of the resonators with complex configurations.

In this paper, an improved mode matching method for

determining the resonant frequencies of WG modes in double

cylindrical dielectric disk resonators is presented in Section

II. This is an extension of Garault and Guillon’s method

[12], [13] from one piece of isotropic dielectric to two pieces

of anisotropic dielectric. The method is applied to quasi-

TE and quasi-TM WG modes with even or odd axial mode

numbers. By taking account of the different axial propagation

and decay constants for TM and TE modes inside and outside

the dielectric due to uniaxial anisotropy, the method allows

the calculation for the TM modes with high axial number to

be more accurate than previous work [14]. The theoretical

calculation of the resonant frequencies is consistent with

experimental results obtained from the double disk resonators

[15], even for high axial mode numbers,

In Section III, a study of the interaction between WG

modes in the double dielectric disk resonator is presented. A

strong coupling between WG modes can cause their resonant

frequency tuning and detuning and degrades the accuracy

of the mode matching method. The mode transition and the

coupling mechanism of the WG modes in the double dielectric

disk resonators is also discussed.

II. RESONANT FREQUENCIES OF

THE WHISPERING GALLERY MODES

A. Theory

Whispering gallery (WG) modes are the hybrid

type modes. However as a first approximation we

can consider that there are two types of WG modes

designated quasi-TMn.,P (WGH,~~P+l ) modes and quasi-

TE~~P(WGE~~P+l ) modes. Each mode is denoted by three
mode numbers ?n, n and p describing the number of field

variations along the azimuthal. radial, and axial directions

respectively,

A cylindrical double disk resonator model with defined

cylindrical coordinates is illustrated by Fig. 1. To simplify the

model, the two dielectric disks are assumed to be identical and

are standing in free space. The dielectric is uniaxial anisotropic

and its crystallographic c-axis is assumed to be parallel to the

z direction. The permittivh y of the dielectric parallel the Z-

axis is defined as e,. The permittivity perpendicular to the

z-axis defined as Er. with c, = E4. The resonator is divided

into 8 regions which are labeled by 1, 2, 3, 4, 1‘, 2’ 3’ and

4’. Owing to its symmetry configuration, only four regions (1,
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Fig. 1. Cylindrical coordinates for the double dkk resonator in free space.
The two disks are identical.

2, 3, and4) above the symmetry plane areconsidered in the

analysis.

The determination of resonant frequencies of the WG modes

requires solution of Maxwell’s equations with appropriate

boundary conditions. The propagation characteristics of the

electrical and the magnetic fields depend on the configuration

of the double disk resonator. Inside the dielectric the fields

are spatially periodic, but the fields are evanescent in regions

1, 3 and 4 outside the dielectric. Assuming the arguments for

the z dependence of components Ez and H. in regions 2 and

3 are equal, the z components E. and Hz for the resonator

can be written as

E.l = A~Jn(k~r) cos(rnq$) exp(–a~z), (la)

EZ2 = B~Jm(k~r) cos(m4)[Al sin(pz) + ~1 COS(&)l,

(lb)

EZ3 = CEKm(k3T-) cos(m#)[AI sin(~z) + BI COS(I?Z)],

(lC)

(id)

H.l = AHJm(kHr) sin(rn~) exp(–cs~.z), (le)

HZ2 = B~Jn(k~r) sin(mq$)[Az sin(~z) + B2 COS(P~)l,

(M)

HZ3 = CHiYm(k3r) sin(mq5)[A2 sin(~z) + B2 cos(/?z)],

(lg)

Hzl = DHJn(kffr) sin(mo) {=31 (lb)

where I%%= Ezk~– f?2Ez/Er, k$ = ETk~ – ~2,k~ = @2 –

k~,k~ = k; + ~~, and k; = k; + a~. Here m is the

azimuthal mode number, @the axial propagation constant, kO

the free space wave number which has k: = w 2WOEO, ~3 the

radial propagation constant outside the dielectric, kE the radial

propagation constant inside the dielectric for the electrical

field, kH the radial propagation constant inside the dielectric

for the magnetic field, @E and ~H the axial decay cOnStantS

outside the dielectric for the electrical field and the magnetic

field respectively. The transverse components can be obtained

from the components E, and Hz based on the Maxwell

equations [13].

The radial matching condition that requires equality of the

tangential components of the E and H fields at r = a on

the boundary of region 2 and region 3 yields a transcendental

equation as

(2)

where ~ = ksa, AH = kHa and ~E = kEa. When k: <0, < is

purely imaginary and the Bessel function Km in equation (2)

is replaced with a Hankel function of the second kind H~2).

For the axial matching, the transverse electric (TE) modes

and the transverse magnetic (TM) modes in regions 1, 2,

and 4 must be considered. The components E, and H. are

assumed zero for quasi-TE and quasi-TM modes respectively.

By satisfying the axial boundary conditions that the transverse

electric and magnetic fields be continuous at the plane inter-

faces z = dl and z = dz, four transcendental equations are

obtained

TE mnp, P even;

(-aH/~ + tan(/?dz))(l - a~/@tanh(a~d~) tan(~d~))

=(1 + aH/~tan(6d2))(a~ /btanh(a~dl)

+ tan(odl)), (3a)

p odd

(-aH//? + tan(~d2))(l - aH//?coth(csHdl) tan(~dl))

=(1 + aH/~tan(@iz))(a~ /@coth(aHd~)

+ tan(fldl)), (3b)

TM~~P, P e=

(-e.aE/fl + tan(~dz))(l - cr.aE//3tanh(aEdl) tan(?dl))

=(1 + sraE/~tan(~d2)) (sTaE/@ tanh(a.Edl)

+ tan(~dl)), (3C)

p odd

(-sraE/~ + tan(,/3d2))(l - &raE/Bcoth(aEdl) tan(~d~))

=(1 + eraE/@tan(@d2)) (eraE/~ coth(cs~dl)

+ tan(/3dl)). (3d)

The above transcendental equations (2) and (3) can be solved

numerically using a computer. The resonant frequencies of

WG modes for a variable gap spacing 2d1 can then be

obtained. The above analysis for the double dielectric disk

resonator can be extend to an ordinary one-piece cylindrical

resonator when the gap spacing x between two disks becomes

zero (i.e., z = 2dl = O).

B. Experimental and Theoretical Results

A double disk sapphire resonators was tested in free space at

room temperature to verify the theory. The cylindrical sapphire

resonator has a radius al = a2 = 15.81 mm and height

hl = 14.42 mm and hz = 14.44 for the two disks respectively.
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the T117 ~~ mode m the resonator as a ti,rnctlon of the gap spacing.

TABLE I
RESONANT FREQUENCIES OF SOME WG MODES IN THE DOUBLE

DISK SAPPHIRE RESONATOR ( a = 158 mm, lL = 1-44 mm)

gap
spacing o 0.1 mm 1 mm

modes theory expen theory expm theory expri

TM71O 8.910 8.933 9.101 9.110 9.312 9.341

TM711 9.319 9.370 9.319 9.372 9.318 9.377

TM712 10.076 10.142 10.314 10.838 10.799

TM713 10.969 11.059 10.969 11,071 10.961 11.156

mlo 96836 9.702 9.7145 9.722 9.901 9.822

mll 10.141 10.126 10.141 10.156 10.116 10.296

TE710 10.856 10.828 10.895 10.848 11050 10977

TE711 11.235 11.207 11.235 11.230 11.210 11.290

The average height of the disks, h = (hl + }12 )/2, was used for

the calculation. The sapphire dielectric constants used for the

calculation are the same as given by Shelby [16], s= = 11.589

and c, = C$ = 9.395.

The WC modes of the double disk resonator were experi-

mentally investigated when the gap spacing between two disks

varied. Fig. 2 shows the experimental and theoretical results of

the TM710 mode in the resonator as the gap spacing varies. The

circular points in Fig. 2 represents a typical resonant frequency

tuning curve for the high tuning coefficient WG modes. The

measurements are in good agreement with theoretical values.

As the gap spacing increases above 0.3 mm, the difference

between theoretical and experimental values increases. But

the difference is still less than 0.4’7. at x = 2 mm. Fig. 2

also shows th~t the Q-factor of mode TM710 in the resonator

is nearly independent of the gap spacing variations. The

degradation of the Q-factor at the gap spacing of NO. 1 mm

is due to the interaction of the TM710 mode with the T13511

mode.

Table I shows more theoretical and experimental results of

WG modes in the resonator at three different gap spacing.

Experimental results and theoretical calculation show that the

gap spacing variation has a strong influence on some TM,,mnP

modes whose axial number p is zero or an even integer. Fig. 3

shows the calculated and measured results of the WG modes

with three different azimuthal numbers as the gap spacing

varies. As the gap spacing increases, the TM modes with

zero or even p have a transition toward TM modes with

7-
6 7 8

Azimuthal Number

(a)

~
. m measared

7 1 I
6 7 8

Azimuthal Number

(b)

Fig. 3, Comparison of the theoretical and experimental resonant frequencies
of the TM modes as the gap spacing has two different values. (a) .r c 0;

(b) .r = 1 mm.

axial numbers p + 1 which are also compatible with the

boundary conditions for one-piece disk resonator. This is why

the TM modes with odd axial numbers have less dependence

on the gap spacing. Compared with the large frequency tuning

TM modes, the resonant frequencies of TE modes show less

dependence on the variation of the gap spacing. This is because

the large frequency tuning TM modes have a higher field

density in the gap which is mainly due to the field discontinuity

of their Es components on the plane boundary of the dielectric.

The components of TE modes however remain unchanged on

the boundary. Like the TM modes, the discrepancy between

experimental and theoretical results for TE modes increases

with an increase of the gap spacing. This is due to the fact

that both the TM and TE modes are hybrid modes and a more

sophisticated theory is required for double resonators with a

large gap spacing.

When the double resonator becomes a single resonator

(x = 0). experiment and calculation agree to a high accuracy,

a few tenths of a percent for the fundamental modes as

shown in Table I. In comparison with Tobar’s paper [14], the

theory gives improved accuracy (<1 ~0) for calculation of the

TM modes with high axial mode number (p > 2) in single

resonators. The TM and TE modes have different axial propa-

gation and decay constants inside and outside the dielectric
due to uniaxial anisotropy, which explains the discrepancy

between theoretical and experimental results for TM modes

with high axial numbers in Tobar’s paper. The errors between

theory and measurements for the single resonators is probably

due to uncertainties in permittivity and dimensions.

III. INTERACTION BETWEEN WHISPERING GALLERY MODES

In most cases, the calculations using the mode matching

method have shown good agreement with experiment. How-

ever there is an exception when a WG mode interacts strongly

with another WG mode, because the resonant frequencies of

the two coupled modes are detuned by each other.
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Fig. 4. An equivalent circuit model of two inductively coupled modes.

The interaction between two coupled WG modes can cause

the variation of the mode frequencies, their Q-factors or both.

From an equivalent circuit model point of view, there are

two types of interaction: resistive coupling and inductive (or

reactance) coupling. When an interaction changes the coupled

mode frequencies largely, this interaction may be called induc-

tive coupling (or reactive coupling). If an interaction mainly

changes the Q-factors of the coupled modes, this interaction

may be called resistive coupling. Based on observed interac-

tion effects in the isolated double disk resonator, most if not

all interaction between two coupled WG modes fall into these

two categories.

For the resistive coupling, the coupling between two WG

modes is weak. The resonant frequencies of the coupled modes

remain unaffected or the frequency detuning is negligible. For

the inductive coupling, the coupling between two WG modes

is usually strong. The coupled modes do not tune across each

other. The stronger the coupling, the larger the separation of

the two coupled normal modes. In this case, there is a fully

mutual mode transition between the two coupled modes if the

two modes are different WG modes.

A. Modeling of Inductive Coupling

A simple equivalent circuit model for two inductively cou-

pled modes in a double disk dielectric resonator is illustrated

in Fig. 4. It consists of two series resonant circuits coupled

by a mutual inductance. Here the losses of the resonators

and the coupling due to probes or cavities are ignored. A

coupling coefficient K is defined in terms of the resonant circuit

parameters by

M

““m (4)

where M is the mutual inductance of the two resonant circuits,

L1 and L2 are the inductance of the two resonant circuits,

respectively. The two resonators have uncoupled resonant

frequencies WI = l/m and W2 = l/_ respectively,

and assuming WI > W2. The frequencies of normal modes in

the coupled resonators is given by

w; + w; + /(w; – W;)2 + 4K2W:W;
w: =

2(1 – K?)
(5)

where w+ and w– are defined as the coupled normal modes.
Assuming 2(w? – w~)/(w~ + w;) <<1, (5) can be simplified

and written as

AW2u~Nw~(l+K), when K>D
o

(6)

w: AW2
w:= w;& —t?>

AW2
when K < —

2W;
(7)

where w; = (w? + w~)/2 and AW2 = w; – w;. Under the

condition of K > AU2 / (2w~ ), the coupling coefficient K can

be simply derived from (4) using w+ which can be measured

(8)

As shown in (6) and (7), the inductive coupling will cause

a separation between two normal modes, and they cannot be

tuned to cross each other.

B. Comparison with Experimental Results

Two typical inductive couplings in the double disk res-

onators are observed: 1) coupling between two identical modes

whose uncoupled resonant frequencies have the same or nearly

the same values 2) coupling between two different modes

whose uncoupled resonant frequencies cannot be tuned to cross

each other.

Fig. 5 shows a typical coupling between two identical

modes in the double disk resonator. When the gap spacing

decreases from a large value, the resonant frequency for one

disk increases and the resonant frequency for the other disk

decreases. Assuming the coefficient l/~ is proportional to the

gap spacing, the theoretical and experimental results are in

good agreement when the gap spacing has a large value. But

this assumption is not true when the gap spacing has a small

value and two modes become decoupled. In this case, the

mode frequency tuning is essentially attributed to the change

of the boundary conditions in the double disk resonator which

can be predicted using the theory described in Section II.

The mode transition accounts for the difference between the

value ~-predicted using the inductive model and the measured

results in Fig. 6 when the gap spacing is less than 4 mm.

In practice, the frequency tuning due to inductive coupling

between the same WG modes can be observed only when

the frequency difference of the two uncoupled modes is very

small. Otherwise the interaction between the two modes does

not occur.

A typical coupling between two different modes is shown

in Fig. 6. The coupling has a tuning characteristic where

the coupled modes do not tune across each other but they

exchange their identities. In this case, the experimental and

theoretical results are in good agreement. In the calculation,

the coupling coefficient is assumed to be a constant which
is true for the interaction in a very small range of the gap

spacing. The coupling coefficient in this case is experimentally

determined from equation (8), K R 0.006. The observed gap

spacing dependence of the Q-factors of the two coupled modes

is more complicated and beyond the scope of the equivalent

circuit model.
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C. Coupling Rules and Mechanism

The WG modes are not simply orthogonal eigen-frequency

modes. They are hybrid modes and the interaction between

the coupled WG modes in the double disk resonators has

some interesting characteristics. The coupling between coupled

WG modes with the same radial number 7L = 1 in double

disk resonators were experimentally investigated. For isolated

double disk resonators, the experiments showed that there

are some selection rules for the inductively coupled modes.

The inductive coupling between two WG modes occurs only

when the differences of the azimuthal and axial mode n trmbers

satisfy the following relations.

Ap = 0,+1 (9)

ArrL = 0,+1 (lo)

where Ap and AWL are axial and azimuthal number differences

of the two WG modes respectively. In isolated double disk

resonators, the inductive coupling occurs only between quasi-

TM modes or between quasi-TE modes. There is no inductive

coupling between TM and TE modes. As shown in Fig. 6,

the tuning curves with an inductive coupling show a mode

transition when the gap spacing increases, i.e., mode TM712
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Fig. 6. (a) A typical inductive coupling between two different TM modes

(b) Measured Q-factors of the two TM modes.

changes into TM61 j and mode TNLj13 becomes TM712 after

the interaction. When the two modes are strongly coupled, they

become hybrids of each other. The reactive coupling of two

modes can occur in a wide frequency range which is larger

than their bandwidth.

A typical resistive coupling is illustrated in Fig. 7. The

coupling only influences the Q-factor of the high Q TM710

mode. This resistive coupling can also occur between TM

modes in isolated double disk resonators. Usually resistive

coupling occurs inside the bandwidth of the modes. The

resonant frequencies of the coupled modes remain unaffected.

The above coupling rules are only true for isolated double

disk resonators. When the double disk resonators are shielded

inside metal cavities, the coupling is modified and become

stronger in comparison with the isolated case. In this case,

inductive coupling can occur between more sets of modes. For

example, the interaction between the TMTIO and TE511 in a

cm’ih appears to be a inductive coupling and their coupling

coefficient K, N 0.0007. However. the modes having close

mode numbers, especially the mode numbers which satisfy

the relations (9) and (10), show stronger couplings than the

others.

The observed phenomenon of the interaction suggests that

the couplings between the coupled WG modes are mainly at-
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tributed to their electromagnetic field states. This is because the

modes with close mode numbers have similar electromagnetic

field states that provide large field overlap (or interaction cross

section) and thus strong couplings. (This phenomenon may be

considered to be analogous to the state transition of atoms in

which the transition occurs only between closer states.)

IV. CONCLUSION

A mode matching method for determining the resonant

frequencies of the WG modes in double disk resonators has

been shown to give frequencies accurate to a few tenths of

a percent for the fundamental WG modes. The theory gives

improved accuracy (< 1~0) for calculation of the TM modes

with high axial mode number (p ~ 2) in single resonators,

Experiments and theory have both shown that the TM modes

with a zero or even axial mode number in the double disk

resonators have larger frequency tuning than other modes .

The interaction between various WG modes in the double

disk resonator has been extensively investigated. The coupling

of various WG modes is mainly determined by their electro-
magnetic field states. The closer the mode states, the stronger

the coupling of the coupled WG modes. Mode transition may

occur between the strongly coupled WG modes.
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