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Study of Whispering Gallery Modes in
Double Disk Sapphire Resonators

Hong Peng

Abstract— A mode matching method for determining the res-
onant frequencies of the whispering gallery modes in a double
cylindrical disk dielectric resonator is presented. The method
has an improved accuracy in the calculation of the transverse
magnetic modes with high axial numbers in a single uniaxial-
anisotropic disk resonator. In this paper, frequency tuning and
detuning due to the interaction between various whispering
gallery modes will also be discussed.

I. INTRODUCTION

IGH PURITY sapphire dielectric resonators have been

used to construct low noise and ultra stable oscillators
owing to their very low dielectric loss and low thermal
expansion coefficient [1]-{3]. A double disk sapphire resonator
with a high @-factor and frequency tuning coefficient has also
been employed to construct an ultra-high sensitivity vibration
transducer [4], [5].

Accurate determination of the resonant frequencies of whis-
pering gallery (WG) modes from complete field solutions for
the tunable dielectric resonators which comprise two or more
pieces of dielectrics is very difficult, and there is a need to
find simplified approaches. A variety of the tunable dielectric
resonators with two or more pieces of dielectrics and methods
of calculating their resonant frequencies (low order modes)
have been reported previously [6]-[9]. One such method is the
mode matching method which solves the basic electromagnetic
field equations with relevant boundary conditions [7], [9].
This method can usually provide accurate solutions for some
simple and symmetrical resonator configurations. There is also
the coupling method which uses equivalent electric circuits
to model the coupled resonators [8], [10]. It provides a
simple way to calculate the resonant frequency tuning and
detuning due to the interaction of two coupled modes. But
this coupling calculation method does not directly give the
resonant frequencies, and is limited to coupled modes with
simple coupling coefficients. (e.g., linear or constant coupling
coefficients) When the coupling coefficients are neither linear
nor constant, the coupling calculation becomes quite difficult.
A finite element method has been introduced to calculate the
resonant frequencies of a temperature compensated sapphire
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resonator [11]. It is expected to be capable of solving problems
of the resonators with complex configurations.

In this paper, an improved mode matching method for
determining the resonant frequencies of WG modes in double
cylindrical dielectric disk resonators is presented in Section
II. This is an extension of Garault and Guillon’s method
[12], [13] from one piece of isotropic dielectric to two pieces
of anisotropic dielectric. The method is applied to quasi-
TE and quasi-TM WG modes with even or odd axial mode
numbers. By taking account of the different axial propagation
and decay constants for TM and TE modes inside and outside
the dielectric due to uniaxial anisotropy, the method allows
the calculation for the TM modes with high axial number to
be more accurate than previous work [14]. The theoretical
calculation of the resonant frequencies is consistent with
experimental results obtained from the double disk resonators
[15], even for high axial mode numbers.

In Section I, a study of the interaction between WG
modes in the double dielectric disk resonator is presented. A
strong coupling between WG modes can cause their resonant
frequency tuning and detuning and degrades the accuracy
of the mode matching method. The mode transition and the
coupling mechanism of the WG modes in the double dielectric
disk resonators is also discussed.

II. RESONANT FREQUENCIES OF
THE WHISPERING GALLERY MODES

A. Theory
Whispering gallery (WG) modes are the hybrid
type modes. However as a first approximation we

can consider that there are two types of WG modes
designated quasi-TM,,,,,(WGH,,rp+1) modes and quasi-
TEmnp(WGE,,,,p4+1) modes. Each mode is denoted by three
mode numbers 7,7 and p describing the number of field
variations along the azimuthal. radial, and axial directions
respectively.

A cylindrical double disk resonator model with defined
cylindrical coordinates is illustrated by Fig. 1. To simplify the
model, the two dielectric disks are assumed to be identical and
are standing in free space. The dielectric is uniaxial anisotropic
and its crystallographic c-axis is assumed to be parallel to the
z direction. The permittivity of the dielectric parallel the z-
axis is defined as e,. The permittivity perpendicular to the
z-axis defined as ., with £, = £4. The resonator is divided
into 8 regions which are labeled by 1,2, 3,4, 1",2" 3’ and
4’. Owing to its symmetry configuration, only four regions (1,
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Fig. 1. Cylindrical coordinates for the double disk resonator in free space.
The two disks are identical.

2, 3, and 4) above the symmetry plane are considered in the
analysis.

The determination of resonant frequencies of the WG modes
requires solution of Maxwell’s equations with appropriate
boundary conditions. The propagation characteristics of the
electrical and the magnetic fields depend on the configuration
of the double disk resonator. Inside the dielectric the fields
are spatially periodic, but the fields are evanescent in regions
1, 3 and 4 outside the dielectric. Assuming the arguments for
the z dependence of components F and H, in regions 2 and
3 are equal, the z components £, and H. for the resonator
can be written as

E,1 = ApJ(kgr) cos(me) exp(—agz), (1a)
E.» = BpJ,(kgr) cos(mg¢)[A1 sin(Bz) + By cos(8z)],

(1b)
E.3 =CgK,,(ksr) cos(mn)[A; sin(8z) + Bj cos(3z)],
(1c)
inh
E.4 = DpJy(kgr) cos(me) {Sclégh((cézzz))’ }’ 1o
H:1 = A I (k) sin(mg) exp(—an2), He

H,o = By J(kgyr)sin(me)[Assin(Bz) + By cos(82)),

(1f)
H,3 = Cy K, (ksr) sin(mg)[Ag sin(8z) + Bg cos(fz)],

(g
Hes = Dy J(kiat) sin(mqﬁ){cs?lsfﬁ(&féz))’ } (1h)

where k2 = e,k — (. /er kY = e,k3 — B2, k3 = 5% -
k2,k% = k% + o2, and k% = k% + o%. Here m is the
azimuthal mode number, 3 the axial propagation constant, kg
the free space wave number which has k¢ = w?poeo, k3 the
radial propagation constant outside the dielectric, kg the radial
propagation constant inside the dielectric for the electrical
field, kx the radial propagation constant inside the dielectric
for the magnetic field, o and oy the axial decay constants
outside the dielectric for the electrical field and the magnetic

field respectively. The transverse components can be obtained
from the components E, and H, based on the Maxwell
equations [13].

The radial matching condition that requires equality of the
tangential components of the £ and H fields at » = a on
the boundary of region 2 and region 3 yields a transcendental
equation as

( K () EMEJLL(AE)> ( Kn(©) | _Jm(An) )
A€ 4 e ) o

EAy

where ¢ = ksa, \gy = kxa and A\g = kga. When k3 <0,¢ is
purely imaginary and the Bessel function K, in equation (2)
is replaced with a Hankel function of the second kind HT(,? ),

For the axial matching, the transverse electric (TE) modes
and the transverse magnetic (TM) modes in regions 1, 2,
and 4 must be considered. The components E, and H, are
assumed zero for quasi-TE and quasi-TM modes respectively.
By satisfying the axial boundary conditions that the transverse
electric and magnetic fields be continuous at the plane inter-
faces z = d; and z = d», four transcendental equations are
obtained

TEpmnp,p even,

(—am /B + tan(Bd2))(1 — am /B tanh(apdi) tan(Bd:))
= (1 + ag/Btan(Bds))(an /6 tanh(agd;)
+ tan(Bd1)), (3a)
p odd
(—ag /B + tan(Bd9))(1 — g /B coth(apgdi) tan(Bd1 )
= (1 + ag/Btan(Bds))(an /B coth(apd:)
+ tan(8dy)),
TMmnp.p even
(—eragp/B + tan(fds))(1 — erap /B tanh(apd;) tan(Bd;))
= (1 + erag/Btan(fds))(e-ap/f tanh(apd; )
+ tan(Bd1)),

(3b)

(3¢)
p odd
(—erag/B + tan(Bd2))(1 — erag/B coth(apd:) tan(Bd:))
= (1+ e,ap/Btan(Bds))(erar/B coth(apd:)
+ tan(8dy)). (3d)

The above transcendental equations (2) and (3) can be solved
numerically using a computer. The resonant frequencies of
WG modes for a variable gap spacing 2d; can then be
obtained. The above analysis for the double dielectric disk
resonator can be extend to an ordinary one-piece cylindrical
resonator when the gap spacing z between two disks becomes
zero (ie., z = 2d; = 0).

B. Experimental and Theoretical Results

A double disk sapphire resonators was tested in free space at
room temperature to verify the theory. The cylindrical sapphire
resonator has a radius a; = ap; = 15.81 mm and height
h1 = 14.42 mm and ho = 14.44 for the two disks respectively.
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Fig 2. The measured and calculated resonant frequencies and Q-factor of

the TM7 ¢ mode m the resonator as a tunction of the gap spacing.

TABLE 1
RESONANT FREQUENCIES OF SOME WG MODES IN THE DOUBLE
Disk SAPPHIRE RESONATOR (@ = 15 8 mm, 1 = 14 4 mm)

gap
spacing 0 0.1 mm 1 mm

modes theory expert theory expert theory expri
TM710 8.910 8.933 9.101 9.110 9.312 9.341
T™M711 9.319 9.370 9.319 9.372 9.318 9.377
T™2 10.076 10.142 10.314 10.838 10.799
TM713 10.969 11.059 10.969 11,071 10.961 11.156
TEs10 9 6836 9.702 9.7145 9722 9.901 9.822
TEe11 10.141 10.126 10.141 10.156 10.116 10.296
TE710 10.856 10.828 10.895 10.848 11 050 10 977
TE711 11.235 11.207 11.235 11.230 11.210 11.290

The average height of the disks, i = (hy+hgo) /2. was used for
the calculation. The sapphire dielectric constants used for the
calculation are the same as given by Shelby [16], e, = 11.589
and ¢, = €5 = 9.395.

The WG modes of the double disk resonator were experi-
mentally investigated when the gap spacing between two disks
varied. Fig. 2 shows the experimental and theoretical results of
the TMy71¢ mode in the resonator as the gap spacing varies. The
circular points in Fig. 2 represents a typical resonant frequency
tuning curve for the high tuning coefficient WG modes. The
measurements are in good agreement with theoretical values.
As the gap spacing increases above (.3 mm, the difference
between theoretical and experimental values increases. But
the difference is still less than 0.4% at + = 2 mm. Fig. 2
also shows that the Q-factor of mode TM-1( in the resonator
is nearly independent of the gap spacing variations. The
degradation of the Q-factor at the gap spacing of ~0.1 mm
is due to the interaction of the TM719 mode with the TEsq;
mode.

Table I shows more theoretical and experimental results of
WG modes in the resonator at three different gap spacing.
Experimental results and theoretical calculation show that the
gap spacing variation has a strong influence on some TM, .,
modes whose axial number p is zero or an even integer. Fig. 3
shows the calculated and measured results of the WG modes
with three different azimuthal numbers as the gap spacing
varies. As the gap spacing increases. the TM modes with
zero or even p have a transition toward TM modes with

gap spacing x=0 gap spacing x=1mm

Frequency (GHz)

Azimuthal Number

Azimuthal Number
(a) (®)

Fig. 3. Comparison of the theoretical and experimental resonant frequencies
of the TM modes as the gap spacing has two different values. (a) xr = 0;
(b) x = 1 mm.

axial numbers p + 1 which are also compatible with the
boundary conditions for one-piece disk resonator. This is why
the TM modes with odd axial numbers have less dependence
on the gap spacing. Compared with the large frequency tuning
TM modes, the resonant frequencies of TE modes show less
dependence on the variation of the gap spacing. This is because
the large frequency tuning TM modes have a higher field
density in the gap which is mainly due to the field discontinuity
of their £, components on the plane boundary of the dielectric.
The components of TE modes however remain unchanged on
the boundary. Like the TM modes, the discrepancy between
experimental and theoretical results for TE modes increases
with an increase of the gap spacing. This is due to the fact
that both the TM and TE modes are hybrid modes and a more
sophisticated theory is required for double resonators with a
large gap spacing.

When the double resonator becomes a single resonator
(¢ = 0), experiment and calculation agree to a high accuracy,
a few tenths of a percent for the fundamental modes as
shown in Table I. In comparison with Tobar’s paper [14], the
theory gives improved accuracy (<1%) for calculation of the
TM modes with high axial mode number (p > 2) in single
resonators. The TM and TE modes have different axial propa-
gation and decay constants inside and outside the dielectric
due to uniaxial anisotropy, which explains the discrepancy
between theoretical and experimental results for TM modes
with high axial numbers in Tobar’s paper. The errors between
theory and measurements for the single resonators is probably
due to uncertainties in permittivity and dimensions.

III. INTERACTION BETWEEN WHISPERING GALLERY MODES

In most cases, the calculations using the mode matching
method have shown good agreement with experiment. How-
ever there is an exception when a WG mode interacts strongly
with another WG mode, because the resonant frequencies of
the two coupled modes are detuned by each other.
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Fig. 4. An equivalent circuit model of two inductively coupled modes.

The interaction between two coupled WG modes can cause
the variation of the mode frequencies, their Q-factors or both.
From an equivalent circuit model point of view, there are
two types of interaction: resistive coupling and inductive (or
reactance) coupling. When an interaction changes the coupled
mode frequencies largely, this interaction may be called induc-
tive coupling (or reactive coupling). If an interaction mainly
changes the Q)-factors of the coupled modes, this interaction
may be called resistive coupling. Based on observed interac-
tion effects in the isolated double disk resonator, most if not
all interaction between two coupled WG modes fall into these
two categories.

For the resistive coupling, the coupling between two WG
modes is weak. The resonant frequencies of the coupled modes
remain unaffected or the frequency detuning is negligible. For
the inductive coupling, the coupling between two WG modes
is usually strong. The coupled modes do not fune across each
other. The stronger the coupling, the larger the separation of
the two coupled normal modes. In this case, there is a fully
mutual mode transition between the two coupled modes if the
two modes are different WG modes.

A. Modeling of Inductive Coupling

A simple equivalent circuit model for two inductively cou-
pled modes in a double disk dielectric resonator is illustrated
in Fig. 4. It consists of two series resonant circuits coupled
by a mutual inductance. Here the losses of the resonators
and the coupling due to probes or cavities are ignored. A
coupling coefficient « is defined in terms of the resonant circuit
parameters by

M
VIiL:

where M is the mutual inductance of the two resonant circuits,
L1 and Ly are the inductance of the two resonant circuits,
respectively. The two resonators have uncoupled resonant
frequencies wy = 1/4/L1C1 and we = 1/+/LyC5 respectively,
and assuming w; > w». The frequencies of normal modes in
the coupled resonators is given by

@

R =

Wl + 3 % =D T A}
2(1 — K?)

)

Wi =

where w; and w_. are defined as the coupled normal modes.
Assuming 2(w? — w?)/(w? + w3) < 1, (5) can be simplified

and written as

A 2
wi~wi(l+k), when x> % ©6)
0
4 2
w Aw
wi ~wlt A—(321$2, when k< 2—w3— )

where wg = (W} + w2)/2 and Aw? = w? — wZ. Under the
condition of x> Aw?/(2w?), the coupling coefficient x can
be simply derived from (4) using w= which can be measured

2
- - ®)

As shown in (6) and (7), the inductive coupling will cause
a separation between two normal modes, and they cannot be
tuned to cross each other.

B. Comparison with Experimental Results

Two typical inductive couplings in the double disk res-
onators are observed: 1) coupling between two identical modes
whose uncoupled resonant frequencies have the same or nearly
the same values 2) coupling between two different modes
whose uncoupled resonant frequencies cannot be tuned to cross
each other.

Fig. 5 shows a typical coupling between two identical
modes in the double disk resonator. When the gap spacing
decreases from a large value, the resonant frequency for one
disk increases and the resonant frequency for the other disk
decreases. Assuming the coefficient 1/« is proportional to the
gap spacing, the theoretical and experimental results are in
good agreement when the gap spacing has a large value. But
this assumption is not true when the gap spacing has a small
value and two modes become decoupled. In this case, the
mode frequency tuning is essentially attributed to the change
of the boundary conditions in the double disk resonator which
can be predicted using the theory described in Section IL
The mode transition accounts for the difference between the
value f-predicted using the inductive model and the measured
results in Fig. 6 when the gap spacing is less than 4 mm.
In practice, the frequency tuning due to inductive coupling
between the same WG modes can be observed only when
the frequency difference of the two uncoupled modes is very
small. Otherwise the interaction between the two modes does
not occur.

A typical coupling between two different modes is shown
in Fig. 6. The coupling has a tuning characteristic where
the coupled modes do not tune across each other but they
exchange their identities. In this case, the experimental and
theoretical results are in good agreement. In the calculation,
the coupling coefficient is assumed to be a constant which
is true for the interaction in a very small range of the gap
spacing. The coupling coefficient in this case is experimentally
determined from equation (8), £ ~ 0.006. The observed gap
spacing dependence of the Q-factors of the two coupled modes
is more complicated and beyond the scope of the equivalent
circuit model.
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C. Coupling Rules and Mechanism

The WG modes are not simply orthogonal eigen-frequency
modes. They are hybrid modes and the interaction between
the coupled WG modes in the double disk resonators has
some interesting characteristics. The coupling between coupled
WG modes with the same radial number » = 1 in double
disk resonators were experimentally investigated. For isolated
double disk resonators, the experiments showed that there
are some selection rules for the inductively coupled modes.
The inductive coupling between two WG modes occurs only
when the differences of the azimuthal and axial mode nambers
satisfy the following relations.

Ap =0, +1 9)
Am =0.x1 (10)

where Ap and Am are axial and azimuthal number differences
of the two WG modes respectively. In isolated double disk
resonators, the inductive coupling occurs only between quasi-
TM modes or between quasi-TE modes. There is no inductive
coupling between TM and TE modes. As shown in Fig. 6.
the tuning curves with an inductive coupling show a mode
transition when the gap spacing increases, i.e., mode TMyqo
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Fig. 6. (a) A typical inductive coupling between two different TM modes
(b) Measured (J-factors of the two TM modes.

changes into TMe13 and mode TMgy3 becomes TM~-15 after
the interaction. When the two modes are strongly coupled, they
become hybrids of each other. The reactive coupling of two
modes can occur in a wide frequency range which is larger
than their bandwidth.

A typical resistive coupling is illustrated in Fig. 7. The
coupling only influences the )-factor of the high ¢ TMyqg
mode. This resistive coupling can also occur between TM
modes in isolated double disk resonators. Usually resistive
coupling occurs inside the bandwidth of the modes. The
resonant frequencies of the coupled modes remain unaffected.

The above coupling rules are only true for isolated double
disk resonators. When the double disk resonators are shielded
inside metal cavities, the coupling is modified and become
stronger in comparison with the isolated case. In this case,
inductive coupling can occur between more sets of modes. For
example, the interaction between the TM19 and TEs;31 in a
cavity appears to be a inductive coupling and their coupling
coefficient x =~ 0.0007. However. the modes having close
mode numbers, especially the mode numbers which satisfy
the relations (9) and (10), show stronger couplings than the
others.

The observed phenomenon of the interaction suggests that
the couplings between the coupled WG modes are mainly at-
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Fig. 7. The interaction between two resistively coupled modes. (a) Measured
frequencies. (b) Measured Q-factors of the two TM modes.

tributed to their electromagnetic field states. This is because the
modes with close mode numbers have similar electromagnetic
field states that provide large field overlap (or interaction cross
section) and thus strong couplings. (This phenomenon may be
considered to be analogous to the state transition of atoms in
which the transition occurs only between closer states.)

IV. CONCLUSION

A mode matching method for determining the resonant
frequencies of the WG modes in double disk resonators has
_been shown to give frequencies accurate to a few tenths of
a percent for the fundamental WG modes. The theory gives
improved accuracy (<1%) for calculation of the TM modes
with high axial mode number (p > 2) in single resonators.
Experiments and theory have both shown that the TM modes
with a zero or even axial mode number in the double disk
resonators have larger frequency tuning than other modes .

The interaction between various WG modes in the double

- disk resonator has been extensively investigated. The coupling
of various WG modes is mainly determined by their electro-
magnetic field states. The closer the mode states, the stronger
the coupling of the coupled WG modes. Mode transition may

occur between the strongly coupled WG modes.
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